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Abstract: - In this paper the use o f feedforward neural networks in the characterization of images by texture
content is investigated. An in depth experimental study is conducted comparing several well known textural
feature extraction techniques along with a novel discrete wavelet transform based methodology. It is demonstrated
that the new technique leads to the design and selection o f feedforward neural networks architectures with the best
texture classification accuracy.      
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1 Introduction
The problem of texture-based segmentation and
classification of images is of considerable interest in
many image-processing applications, like remote
sensing, medical imaging, and quality control.
Analysis of textures requires the identification of
proper descriptors or features that differentiate the
textures in the image for further segmentation,
classification and recognition. Techniques  capable of caf
producing appropriate textural descriptors include
simple statistical measures of gray level distribution,
measures of local density or other gradient features,
the use of run lengths and the computation of second
order statistic s, like the cooccurrence matrice s,
[2][3][8][12].

The emergence of the 2-D wavelet transform
[7][10][13][14] as a popular tool in image processing
offers the ability of robust feature extraction in
images. Due to their strong localization properties,
wavelets have been prov en to be appropriate for the
description of the textural informatio n in the image
providing a richer problem specific-information.

Furthermore second order statistical measures can be
evaluated on the output of the 2D wavelet
transformation in order to create a more reliable
framework for the generation of the textural
descriptors [13].

In this paper we propose a novel methodology for
texture classification of images by examining the
discrimination abilities of their textural properties.
Besides neural network classifiers and the 2-D wavelet
transform, the tools utilized in this paper are the
cooccurrence matrices, the fractal dimension, and the
gray level run length methods for textural feature
extraction.

The contribution of the paper lies on the use of a
novel texture descriptor for a classification scheme
based on Feedforward Neural  Networks  (FNNs )  and
on the investigation of the effects of different textural
descriptors on  FN N learning and generalization
capabilities. The experimental study conducted in this
paper aims precisely at illustrating this latter
investigation.



2 Textural Descriptors used

In this section three widely known feature
extraction methods are briefly described.

2.1 The cooccurrence matrices

Cooccurrence matrices [2] represent the spatial
distribution and the dependence of the gray levels
within a local area. Each (i,j)th entry of the matrices,
represents the probability of going from one pixel with
gray level (i) to another with a gray level (j) under a
predefined distance and angle. From these matrices,
sets of statistical measures are computed (called
feature vectors) for building different texture models.

In our experiments, we have considered four
angles, namely 0, 45, 90, 135 as well as a predefined
distance of one pixel in the formation of the
cooccurrence matrices. Therefore, we have formed
four cooccurrence matrices. According to our
experiments, the following four statistical measures
out of the 14, originally proposed by Haralick [2][3],
provide high discrimination accuracy that can be only
marginally increased by adding more measures in the
feature vector:
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Thus, using the above mentioned four
cooccurrence matrices we have obtained 16 features
describing spatial distribution in each window.

2.2 The run-length encoding descriptor

The run length matrix P with elements p(i,j), where the
(i)th dimension corresponds to the gray level and has a
length equal to the maximum gray level n, while the
(j)th dimension corresponds to the run length and has
length equal to the maximum run length l, represents
the frequency that (j) points with a gray level (i)
continue in the direction q [12]. As with the
cooccurrence matrix, q = 0ï , 45ï , 90ï  and 135ï  offer
the greatest interest. Five features can be calculated
from the run length matrix as shown in the equations
below:
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• Gray Level Nonuniformity
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• Run Percentage
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 where N2
 is the number of points in the image.

 The run lengths are expected large for coarse
textures, especially structural textures, but can be quite
small for fine textures. The nonuniformity features are

 

 

 

 

 



small, when the gray levels or the run lengths are
similar throughout the matrix, while the long run
length is large when there is high intensity clustering
in the texture.
 
 
 2.3 The fractal dimension

 The fractal dimension is a feature that characterizes
the roughness of an image [8]. A well-known method
for evaluating the fractal dimension is a variation of
the well-known box-counting procedure, which is
efficient and accurate for texture classification tasks
[11].

 Following this approach, the grey-level image is
considered as a 3-dimensional space ( )x y z, , , with

( )x y,  denoting a 2-dimensional location, and ( )z

denoting the grey level. This 3-dimensional space is
partitioned into cubes of size r r r× × . The position of
the columns of the cubes, vertical to the ( )x y,  pixel

plane is assigned as ( )i j, , where

 ( ) ( )i j x r y r, ,= ,
 and the boxes are enumerated from bottom to top. In
every column ( )i j,  the cubes k and l which contain the
minimum and maximum grey levels of the column,
respectively, are found.

 The fractal dimension D is estimated through the

least mean square linear fit of ( )log N r  against

( )log 1 r  for different values of r :
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 It is possible that two images of different texture

and different optical appearance have the same fractal
dimension. Thus, the discrimination capability of the
fractal dimension, in some cases, is problematic. In
order to alleviate this problem, the fractal dimension
has been computed in the original subimage, as well as
in the first two lower resolution versions of the
original subimage and the first two sets of detail
subimages, containing higher horizontal and vertical
frequency spectral information. Decomposing the

original image through the dyadic wavelet transform
[6] has produced the subimages.

 The above feature extraction procedure is
originally proposed in [4]. Following this technique,
seven-dimensional training patterns can be created
from each image region.
 
 

 3 A Novel DWT Textural Descriptor
The problem of texture discrimination, aiming at
labeling image areas, is considered in the wavelet
domain, since it has been demonstrated that discrete
wavelet transform (DWT) can lead to better texture
modeling [13]. We use the popular 2-D DWT schemes
[6][14] performing a one-level wavelet decomposition
of the image regions, thus resulting in four wavelet
channels. Concerning the wavelet decomposition of
the image regions, among the one approximate and the
three detail wavelet channels 2, 3, 4 (frequency index)
we have selected for further processing only the three
detail channels, whose variances are the largest, since
they might carry more information than the
approximate one.

A more sophisticated approach is proposed by
applying cooccurrence analysis to the three detail
wavelet channels and extracting 3 ×16 = 48 relevant
measures [13][14].
 

 3.1 The wavelet transform

 Wavelets offer a general mathematical approach for
hierarchical function decomposition. According to this
transformation, a function, which can be a function
representing an image, a curve, signal etc., can be
described in terms of a coarse level in addition with
details that range from broad to narrow scales.

 Wavelets offer an novel technique for computing
the levels of detail present, under a framework that is
based on a chain of approximation vector spaces

{V j ⊂  L2 ( )ℜ2 , j ∈Ζ } and a scaling functionφ
such that the set of functions

( ){ }2 22− − − ∈j j t k k/ :φ Ζ  form an orthonormal basis

for V j . These two components introduce a

mathematical framework presented by Mallat [6] and
called multiresolution analysis.



 A MultiResolution Analysis (MRA) scheme of

L2 ( )ℜ2 can be defined as a sequence of closed
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The subspaces Wj  are called wavelet subspaces and

contain the difference in signal information between
the two spaces V j and V j−1 . These sets contribute to a

wavelet decomposition of L2  according to Eq.(1).

3.2 Selecting feature descriptors in the wavelet
domain

The problem of texture classification, aiming at
discriminating among various texture classes, is
considered in both the time and the wavelet domain,
since it has been demonstrated that discrete wavelet
transform (DWT) can lead to better texture modelling
[7]. In this way, we can better exploit the well known
local information extraction properties of the wavelet
signal decomposition as well as the features of the
wavelet denoising procedures [10]. It is expected that
this kind of information, considered in the wavelet
domain, should be smooth due to the time-frequency
localization properties of the wavelet transform. It is
interesting, that only the 2-D Haar wavelet transform,
which is considered as a simple one compared with the
other wavelet bases, has exhibited the expected and
desired properties. We have performed a one-level

wavelet decomposition of the images, thus resulting in
four wavelet channels.

As already mentioned, among the three channels
2, 3, 4 (frequency index) the one whose histogram
presents the maximum variance, which is the channel
that represents the most clear appearance of the
changes between the different textures, has been
selected for further processing.

The subsequent step in the proposed methodology
is to obtain image windows from the selected wavelet
channel and the original image of dimensions M×M
and 2M×2M respectively. Feature extraction is
conducted by using the information that comes from
the cooccurrence matrices [2]. Among the 14
statistical measures, originally proposed by Haralick
[3], that are derived from each cooccurrence matrix we
have considered only four of them: angular second
moment, correlation, inverse difference moment and
entropy. These measures, as experiments indicated,
provide high discrimination accuracy that can be only
marginally increased by adding more measures in the
feature vector. Using the above mentioned
cooccurrence matrices 16 features describing spatial
distribution in each window in the wavelet domain
have been obtained. For each window in the image of
the selected wavelet channel, a feature vector
containing 16 features that uniquely characterizes it in
the wavelet domain has been formed. For each such
window a set of four features has been obtained by
calculating the above four mentioned statistical
measures. Finally, these 48 dimensional feature
vectors form the input vector of the neural classifier.

4 Comparative Experimental Study
A total of 12 Brodatz texture images [1] of size
512×512 has been used. They are shown in Figure 1.
From each texture image 10 subimages of size
256×256, with 256 gray levels depth, were randomly
selected, and the feature extraction methods described
in Sections 2 and 3 have been applied. For each
feature extraction method 30 simulation runs have
been performed using FNNs with 5 to 60 neurons in
the hidden layer in order to find the architecture with
the best average generalization capability. The best
available architecture for each case is exhibited in
Table 1.



Figure 1. Twelve texture patterns obtained by
digitizing images found in the "Brodatz Album".
Textures: 20, 5, 51, 3, 12, 9, 93, 15, 68, 77, 78, 79.

For example, an FNN with 48 input neurons, 30
hidden and 12 output neurons with sigmoid activation
function and bias exhibited the best performance for
the DWT distribution estimation method.

Textural Descriptor FNN

DWT distribution estimation 48-30-12

Fractal dimension 7-7-12

Cooccurrence analysis 16-40-12

Run length moments 5-18-12

Table 1. The best available FNN architectures.

The simulations have been performed using three
batch training algorithms: the standard back-
propagation (BP) [9], the momentum back-propagation
(MBP) [9] and the back-propagation with variable
stepsize (BPVS) [5]. Training terminated when the
classification error was less than 3%.

Details on the performance of the algorithms are
presented in Table 2. The first line in every row
contains the average number of gradient evaluations
and the second one the average number of error

function evaluations needed to reach the termination
condition. It is worth noting that in practice the
computational cost of a gradient evaluation is
considered at least three times more than the cost of an
error function evaluation. 100% of success has been
achieved for the three algorithms in the training phase.

DWT Fractal
dimension

Cooccurrence Run
length

BP 1054
1054

688889
688889

924
924

4906
4906

MBP 1067
1067

596430
596430

9236
9236

5006
5006

BPVS 262
386

23597
37678

677
1008

265
388

Table 2. Average of gradient (first line in every row)
and error function evaluations (second line in every
row).

The generalization capability of the 30 FNNs has
been tested using patterns from 20 subimages of size
256×256 randomly selected from each image. As
shown in Figure 2 the three training algorithms
exhibited the best generalization performance when
trained with DWT extracted patterns. In this case, an
average performance of 99% has been reached. Note
that the average performance of BPVS trained FNNs
in all cases was the best.

Cooccurrence

Run length moments

Fractal dimension 

DWT

88 89 90 91 92 93 94 95 96 97 98 99

Average generalization performance (%)

Cooccurrence

Run length moments

Fractal dimension 

DWT

BPVS

MBP

BP

Figure 2. Average generalization performance of the
trained FNNs.

Detailed generalization results for the BPVS
trained FNNs are exhibited in Figure 3. As shown by
the number of misclassified test patterns out of a set of
240 patterns from each feature extraction method, the
FNNs that have been trained with DWT distribution



estimation patterns had better generalization capability
than all the others.
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Figure 3. Number of BPVS trained FNNs with respect
to their corresponding number of misclassified test
patterns for the four texture extraction methods.

For example, 7 FNNs trained with DWT
distribution estimation patterns misclassified only 6
test patterns out of 240. On the other hand, 18 FNNs
trained with Run length patterns misclassified 8 test
patterns out of 240. Note that one FNN trained with
DWT distribution estimation patterns achieved 100%
classification success, i.e. it exhibited 0
misclassifications.

5. Conclusions
A novel DWT distribution estimation technique has
been suggested for texture description. This method,
along with three other well known feature extraction
techniques, have been comparatively investigated in
terms of their effects on the training and generalization
performance of the neural network component of a
texture classification scheme. The preliminary results
indicate that the proposed approach is considerably
reliable for demanding applications.
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